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Abstract— In this paper, we propose a simple adap-
tive control approach for uncertain flexible-joint robots
including motor dynamics. The dynamic surface method
is applied to design the simple controller for electrically
driven flexible-joint (EDFJ) robots, and the uncertainties
in the robot and motor dynamics are compensated by
using the adaptive function approximation technique. We
prove that all signals in the controlled closed-loop system
are uniformly ultimately bounded. Simulation results for
three-link EDFJ manipulators are provided to validate
the effectiveness of the proposed control system.

I. I NTRODUCTION

During the past several years, the tracking control
of the flexible joint (FJ) robots has attracted many
researchers due to the joint flexibility. There are many
works using various control techniques such as PD
control [1], sliding mode control [2], [3], fuzzy control
[4], [5], neural network (NN) control [6], [7], and
backstepping control [9]- [11]. However, all of these
schemes have ignored the dynamics coming from elec-
tric motors which should be required to implement the
FJ robots in the real environment. Considering motor
dynamics makes difficult and complex to design the
controller for electrically driven flexible-joint (EDFJ)
robots which is the fifth-order nonlinear system. Even
if a recent result were reported for EDFJ robots, the
uncertainties of the joint flexibility were not considered
[12].

In this paper, we propose a simple adaptive con-
trol approach for EDFJ robots with uncertainties and
disturbances. The dynamic surface method [13] which
can solve the “explosion of complexity” problem of the
backstepping technique is applied to design a simple
controller of EDFJ robots. In addition, the function
approximation technique using self-recurrent wavelet
neural networs (SRWNNs) [14] and the adaptive tech-
nique are employed to compensate the model un-
certainties and disturbances. From Lyapunov stability
analysis, it is shown that all signals in a closed-loop
adaptive system are uniformly ultimately bounded.
Finally, we simulate a uncertain three-link EDFJ ma-
nipulator with complex nonlinear functions to demon-
strate the simplicity and the robustness of the proposed
control scheme.
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This paper is organized as follows. In Section 2,
we introduce the model and basic properties of EDFJ
robot systems with uncertainties. In Section 3, the
function approximation technique using SRWNN is
presented and a simple adaptive control system for
solving the robust control problem of the EDFJ robot
system is proposed. In addition, the stability, robust-
ness, and performance of the proposed control system
are analyzed based on Lyapunov stability theorem.
Simulation results are discussed in Section 4. Finally,
Section 5 gives some conclusions.

II. PROBLEM FORMULATION

The dynamic model of an uncertainn-link EDFJ
robot consists of robot dynamics, joint flexibility, and
motor dynamics described by using the following
forms:

M(q)q̈ + C(q, q̇)q̇ + G(q) + F q̇

+ Km(q − qm) + Υr(q, q̇, qm) = 0 (1)

Jq̈m + Bq̇m + Km(qm − q)
+ Υa(qm, q̇m, q, ie) = Hie (2)

L̄i̇e + Rie + Keq̇m + Υe(q̇m, ie) = u (3)

where

Υr(q, q̇, qm) = −M(q)M̄−1(q){K̄m(qm − q)
− Tr − F̄ q̇ − Ḡ(q)− C̄(q, q̇)q̇}
+ {Km(qm − q)− F q̇ −G(q)− C(q, q̇)q̇},

Υa(qm, q̇m, q, ie) = −JJ̄−1{Hie − Ta

− K̄m(qm − q)− B̄q̇m}
+ {Hie −Km(qm − q)−Bq̇m},

and

Υe(q̇m, ie) = (R̄−R)ie + (K̄e −Ke)q̇m + Te

including the external disturbancesTr Ta, and Te ∈
Rn, denote the uncertainty terms of robot dynamics,
joint flexibility, and actuator dynamics of the EDFJ
robot system, respectively. Here,q, q̇, q̈ ∈ Rn denote
the link position, velocity, and acceleration vectors,
respectively.M(q) ∈ Rn×n is the nominal inertia
matrix,C(q, q̇) ∈ Rn×n denotes the nominal Coriolis-
centripetal matrix,G(q) ∈ Rn is the nominal gravity
vector, andF ∈ Rn×n is a nominal diagonal, positive
definite matrix representing the coefficient of friction
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at each joint.qm, q̇m, q̈m ∈ Rn denote the actuator
position, velocity, and acceleration vectors, respec-
tively. The nominal constant positive definite, diagonal
matricesKm ∈ Rn×n, J ∈ Rn×n, and B ∈ Rn×n

represent the joint flexibility, the actuator inertia, and
the natural damping term, respectively.H ∈ Rn×n is a
nominal invertible diagonal matrix which characterizes
the electromechanical conversion between current and
torque.ie ∈ Rn is the armature current vector ofn dc
joint motors,L̄ are an actual positive definite constant
diagonal matrix denoting the electrical inductance of
the motors.R and Ke ∈ Rn×n are nominal positive
definite constant diagonal matrices denoting electrical
resistance and back electromotive force constant of the
motors, respectively. The control vectoru ∈ Rn is
used as the torque input at each actuator.

Assumption 1:Suppose that the nominal matrices
M(q), C(q, q̇), G(q), F , Km, J , B, H, R, and Ke

are only known, but the actual matrices̄M(q), C̄(q, q̇),
Ḡ(q), F̄ , K̄m, J̄ , B̄, H̄, L̄, R̄, and K̄e with model
uncertainties, and the external disturbancesTr Ta, and
Te are unknown.

Assumption 2:The system statesq, q̇, qm, q̇m, and
ie are all available for feedback.

Assumption 3:The desired trajectory vectorqd, its
first and second derivativeṡqd, q̈d are only available,
and bounded.

Property 1: [9] The link inertia matrix M(q)
is symmetric, positive definite, and bothM(q) and
M−1(q) are uniformly bounded.

Property 2: ‖M−1(q)Km‖2 ≤ Mm whereMm is a
known positive constant, and‖ · ‖2 denotes the matrix
induced two-norm.

Property 2 is reasonable due toProperty 1 and a
constant positive definite matrixKm.

Define the state space variables asx1 = q, x2 = q̇,
x3 = qm, x4 = q̇m, andx5 = ie. Then, the uncertain
EDFJ robot system is described as the following state-
space forms:

ẋ1 = x2, (4)

ẋ2 = M−1(x1)[−C(x1, x2)−G(x1)− F (x2)
−Kmx1 + Kmx3] + Ξr(xr), (5)

ẋ3 = x4, (6)

ẋ4 = J−1[−Bx4 −Km(x3 − x1) + Hx5]
+ Ξa(xa), (7)

L̄ẋ5 = −Rx5 −Kex4 + Ξe(xe) + u (8)

wherexr = [xT
1 xT

2 xT
3 ]T , xa = [xT

1 xT
3 xT

4 xT
5 ]T ,

xe = [xT
4 xT

5 ]T , Ξr = −M−1(x1)Υr, Ξa = −J−1Υa,
andΞe = −Υe.

The objective of this paperis to design a simple
adaptive control lawu for the state vectorx1 of EDFJ
robots to track the desired trajectory vectorqd under
Assumptions1-3.

III. M AIN RESULTS

A. Function Approximation Using SRWNNs

To compensate the unknown uncertainty terms, we
use the self-recurrent wavelet neural network (SR-
WNN) and the adaptive technique. That is, the un-
certainty termsΞj(xj) (j = r, a, e) are approximated
by SRWNN and the unknown actual diagonal constant
matrix L̄ is estimated by the adaptive technique.

The SRWNN consists of the four layer, i.e, an
input layer, a mother wavelet layer including self-loop
weights, a product layer, and an output layer. See [14]
for the detail structure of the SRWNN.

According to the powerful approximation ability, the
SRWNN systemŝΞj(·) can approximate the uncer-
tainty termsΞj(·) to a sufficient degree of accuracy
over compact setsKxj as follows:

Ξj(xj) = Ξ̂j(xj |W ∗
j ) + εj(xj)

= Ξ̂j(xj |Ŵj) + [Ξ̂j(xj |W ∗
j )− Ξ̂j(xj |Ŵj)]

+ εj(xj) (9)

wherej = r, a, e, xj ∈ Kxj
are the inputs of SRWNN

systems,εj(xj) denote reconstruction errors,̂Wj =
diag[Ŵj,i] (i = 1, 2, · · · , n) are estimated weighting
matrices, andW ∗

j are optimal weighting matrices.

Here, diag[·] denotes a diagonal matrix, and̂Wj,i

are estimated weight vectors. The optimal weighting
matricesW ∗

j for SRWNNsΞ̂j(·) are defined asW ∗
j =

arg min
Ŵj

[supxj∈Kxj
‖Ξj(xj)− Ξ̂j(xj |Ŵj)‖].

Assumption 4: [15] Assume that the optimal
weight matrices are bounded as‖W ∗

j ‖F ≤ Wj,M ,
wherej = r, a, e, ‖ · ‖F denotes the Frobenius norm.
Note that the bounded valuesWj,M are not required
to implement the controller proposed in this paper.
These values are used only for the stability analysis of
the proposed control system. Taking the Taylor series
expansion of̂Ξj(xj |W ∗

j ) aroundŴj for the training
of all weights of the SRWNNs, respectively, we can
obtain [16]

Ξ̂j(xj |W ∗
j )− Ξ̂j(xj |Ŵj)

= W̃T
j Θj + Hj(W ∗

j , Ŵj) (10)

where j = r, a, e, W̃j(t) = W ∗
j − Ŵj(t),

Θj =
[

∂Ξ̂j,1

∂Ŵj,1

∂Ξ̂j,2

∂Ŵj,2
· · · ∂Ξ̂j,n

∂Ŵj,n

]T

, Hj(W ∗
j , Ŵj)

are high-order terms. Substituting (10) into (9), we
obtain

Ξj(xj) = Ξ̂j(xj |Ŵj) + W̃T
j Θj + αj (11)

‖αj‖ ≤ ρj (12)

wherej = r, a, e, αj = Hj(W ∗
j , Ŵj)+εj(xj). ρj > 0

are unknown values used only for the stability analysis
of the proposed control system.
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B. Adaptive Controller Design

In this section, we present the dynamic surface
design approach for designing a simple adaptive con-
trol of EDFJ robots. The proposed control system is
designed step by step.

Step 1) Consider the link dynamics (4)-(5). Define
the first error surface vectors1 as

s1 = x2 − q̇d + Λ(x1 − qd) (13)

whereΛ denotes a positive definite diagonal matrix.
Differentiating (13) yields

ṡ1 = M−1(x1)[−C(x1, x2)−G(x1)− F (x2)
−Kmx1 + Kmx3] + Ξr(xr)− q̈d

+ Λ(x2 − q̇d).

Then, we choose the virtual control lawν1 as

ν1 = K−1
m [Kmx1 + C(x1, x2) + G(x1) + F (x2) + M

× {−k1s1 − Ξ̂r(xr|Ŵr) + q̈d − Λ(x2 − q̇d)}] (14)

wherek1 > 0 is a constant.̂Wr is the estimate of the
weighting matrixWr, and is updated by the adaptation
law using aσ-modification [17] as follows:

˙̂
W r,i = λ1,iΘr,is1,i − σ1λ1,iŴr,i (15)

where i = 1, . . . , n, λ1 is a tuning gain matrix, and
σ1 > 0. Here,Ŵr,i andλ1,i the ith diagonal element
of Ŵr and λ1, respectively.Θr,i and s1,i are theith
element ofΘr ands1, respectively.

For the filtered virtual controllerν1f , the virtual
controllerν1 is passed through the first-order low pass
filter

τ1ν̇1f + ν1f = ν1, ν1f (0) = ν1(0) (16)

with a time constantτ1.
Step 2) Consider the equation (6). The surface error

is defined ass2 = x3− ν1f , and its derivative iṡs2 =
x4 − ν̇1f . Then, choose the virtual control law using
(16) as

ν2 = −k2s2 + (ν1 − ν1f )/τ1 (17)

where k2 > 0 is a constant. To obtain the filtered
virtual controllerν2f , we passν2 through a first-order
low pass filter with a time constantτ2 > 0 as follows:

τ2ν̇2f + ν2f = ν2, ν2f (0) = ν2(0). (18)

Step 3) Consider the equation (7). Define the surface
error, with the filtered virtual control vectorν2f , as
s3 = x4−ν2f . Then, differentiating it and substituting
(7) yields

ṡ3 = ẋ4 − ν̇2f

= J−1[−Bx4 −Km(x3 − x1) + Hx5]
+ Ξa(xa)− ν̇2f , (19)

Then, we choose the virtual control lawν3 as

ν3 = H−1[Km(x3 − x1) + Bx4 + J{−k3s3

− Ξ̂a(xa|Ŵa) + (ν2 − ν2f )/τ2}] (20)

where k3 is a positive constant.̂Wa is the estimate
of the weighting matrixWa, and is updated by the
adaptation law

˙̂
W a,i = λ2,iΘa,is3,i − σ2λ2,iŴa,i (21)

where i = 1, . . . , n, λ2 is a tuning gain matrix, and
σ2 > 0. Here, Ŵa,i and λ2,i are the ith diagonal
element ofŴa andλ2, respectively.Θa,i ands3,i are
the ith element ofΘa ands3, respectively. In addition,
the filtered virtual control lawν3f is obtained by the
following first-order filter:

τ3ν̇3f + ν3f = ν3, ν3f (0) = ν3(0) (22)

whereτ3 is a time constant.
Step 4) Consider the equation (8). Define the surface

error s4 = x5 − ν3f . By differentiating it, we obtain

L̄ṡ4 = L̄ẋ5 − L̄ν̇3f

= −Rx5 −Kex4 + Ξe(xe) + u− L̄ν̇3f . (23)

Then, the actual control lawu is chosen as

u = −k4s4 + Rx5 + Kex4

− Ξ̂e(xe|Ŵe) + ϑ̂(ν3 − ν3f )/τ3 (24)

where k4 is a positive constant, and̂We and ϑ̂ are
the estimated matrices of the matrix̂We and ϑ = L̄,
respectively, and are updated by the adaptation laws

˙̂
W e,i = λ3,iΘe,is4,i − σ3λ3,iŴe,i (25)

˙̂
ϑi = −λ4,i

ν3,i − ν3f,i

τ3
s4,i − σ4λ4,iϑ̂i (26)

where i = 1, . . . , n, λ3 and λ4 are tuning gain
matrices, andσ3, σ4 > 0. Here, Ŵe,i, ϑ̂i, λ3,i, and
λ4,i are theith diagonal element of̂We, ϑ̂, λ3, and
λ4, respectively.Θe,i, s4,i, ν3,i, andν3f,i are theith
element ofΘe, s4, ν3, andν3f , respectively.

C. Stability Analysis

In this subsection, we prove the uniformly ulti-
mately boundedness of the solution of the proposed
control system. We first derive analytic expressions
of the closed-loop system. Define the boundary layer
errors as follows:

yl = νlf − νl (27)

wherel = 1, 2, 3.
Using (11), (14), (17), (20), (24) and (27), the

derivatives of the error surfaces can be rewritten as
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follows:

ṡ1 = M−1(x1)Km(s2 + y1)− k1s1

+ W̃T
r Θr + αr, (28)

ṡ2 = s3 + y2 − k2s2, (29)

ṡ3 = J−1H(s4 + y3)− k3s3 + W̃T
a Θa + αa, (30)

L̄ṡ4 = −k4s4 + W̃T
e Θe + αe + ϑ̃

y3

τ3
, (31)

whereϑ̃ = ϑ− ϑ̂. Differentiating (27), we can obtain

ẏ1 = −y1

τ1
+ P1(s1, s2, y1,

˙̂
Wr, Qd), (32)

ẏ2 = −y2

τ2
+ P2(s1, s2, s3, y1, y2,

˙̂
Wr, Qd), (33)

ẏ3 = −y3

τ3

+ P3(s1, s2, s3, s4, y1, y2, y3,
˙̂

Wr,
˙̂

Wa, Qd), (34)

where Qd = [qd q̇d q̈d]T , P1(s1, s2, y1,
˙̂

Wr, Qd) =
−K−1

m [Kmẋ1 + Fẋ2 + ∂G
∂x1

ẋ1 + ∂C
∂x1

ẋ1 + ∂C
∂x2

ẋ2 +
∂M
∂x1

ẋ1{−k1s1 + q̈d − Ξ̂r(xr|Ŵr) − Λ(x2 − q̇d)} +

M(x1){−k1ṡ1 +
...
q d − ∂Ξ̂r

∂xr
ẋr − ∂Ξ̂r

∂Ŵr

˙̂
Wr − Λ(ẋ2 −

q̈d)}], P2(s1, s2, s3, y1, y2,
˙̂

Wr, Qd) = k2ṡ2 +
ẏ1
τ1

, and P3(s1, s2, s3, s4, y1, y2, y3,
˙̂

Wr,
˙̂

Wa, Qd) =

−H−1[Km(ẋ3 − ẋ1) + Bẋ4 + J{−k3ṡ3 − ∂Ξ̂a

∂xa
ẋa −

∂Ξ̂a

∂Ŵr

˙̂
W r − ẏ2

τ2
}] are continuous functions.

Let us consider the following Lyapunov candidate
function

V =
1
2

[
3∑

l=1

sT
l sl + sT

4 L̄s4 +
3∑

l=1

yT
l yl

+tr(W̃T
r λ−1

1 W̃r) + tr(W̃T
a λ−1

2 W̃a)

+tr(W̃T
e λ−1

3 W̃e) + tr(ϑ̃T λ−1
4 ϑ̃)

]
, (35)

whereλl = diag[λl,i] (l = 1, . . . , 4), (i = 1, 2, · · · , n)
λl,i are the tuning gains.tr(·) denotes the trace of a
matrix.

Theorem 1:Suppose that the uncertain EDFJ robot
(1), (2), and (3) is controlled by the proposed con-
troller (24). If the proposed control system satisfies
Assumptions1-4 and the adaptation laws are chosen
as (15), (21), (25), and (26), then for any initial
conditions satisfyingV (0) ≤ µ, there existkl, σl, and
λl (l = 1, 2, 3, 4) such that the errors of states and
adjustable weights of the closed-loop system are uni-
formly ultimately bounded and may be kept arbitrarily
small.

Proof: See the Appendix I.
Remark 1: In the adaptation laws (15), (21), and

(25), the partial derivative termsΘr,i, Θa,i, andΘe,i

for tuning all weights of the SRWNNs can be evaluated
by the chain rule, as illustrated in [14].
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Fig. 1. Tracking results and errors (a) Joint 1 (b) Joint 2 (c) Joint
3 (d) Tracking errors.
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TABLE I

THE NOMINAL PARAMETERS FOR THE ROBOT DYNAMICS.

Mass (kg) Link (m) Moment of Inertia (kgm2)

Joint 1 1.0 0.5 43.33×10−3

Joint 2 0.7 0.4 25.08×10−3

Joint 3 1.4 0.3 32.67×10−3
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Fig. 2. Outputs of SRWNNs and estimates of diagonal elements
of ϑ (a) SRWNN1 (b) SRWNN2 (c) SRWNN3 (d)̂ϑ.

IV. SIMULATION RESULTS

In this section, to illustrate the validity of the
suggested adaptive control system, the three-link EDFJ
manipulator is considered. The nominal robot dynam-
ics used in [15] is used. The nominal robot parameters
of the three-link EDFJ manipulator are defined in
Table I. In this simulation, the link massesmis in
the robot dynamics, and the parametersKm, H, R,
and Ke in the actuator dynamics are assumed to be
uncertain. It is assumed that the masses in the robot
dynamics have 50%, 100%, and 50% uncertainties,
namely, the actual mass values̄mi with uncertain-
ties are m̄1 = 1.5, m̄2 = 1.4, and m̄3 = 2.1.
The nominal and actual EDFJ parameters are given
as J = diag[0.03 0.03 0.03], B = diag[5 5 5],
Km = diag[100 100 100], H = diag[10 10 10], R =
diag[1.2 1.2 1.2], Ke = diag[15.6 15.6 15.6], K̄m =
diag[106.2 105.6 103.2], H̄ = diag[10.5 11.2 11.1],
L̄ = diag[0.048 0.048 0.048], R̄ = diag[2.3 1.5 2.5],
andK̄e = diag[15.2 15.9 16.1]. In addition, the time-
varying external disturbancesTr, Ta, andTe given by

Tr = [0.2 cos(t) 0.2 sin(t) 0.1 cos(t)]T ,

Ta = [0.1 cos(t) 0.2 sin(2t) 0.2 cos(t)]T ,

and

Te = [0.1 cos(2t) 0.2 sin(1.5t) 0.2 cos(t)]T ,

are assumed to influence the actual EDFJ robot model.
In this simulation, the initial positions of the three-link

FJ manipulator are set toq1(0) = q2(0) = q3(0) = 0
and the controller parameters for the proposed control
system are chosen askl = 60, Λ = diag[8 10 15],
λj = diag[0.00001 0.00002 0.0001], λ4 =
diag[0.000002 0.000002 0.000002], σl = 0.01,
and τj = 0.001 (l = 1, . . . , 4) (j = 1, 2, 3). We
employ the SRWNN1 system̂Ξr(·), the SRWNN2
systemΞ̂a(·), and the SRWNN3 system̂Ξe(·). Here,
note that only one product node is used for each
SRWNN. The tracking results and errors of the the
proposed control system as shown in Fig. 1 indicate
that the suggested method can overcome unknown
model uncertainties resulting from the robot dynamics,
joint flexibility, and the motor dynamics, and time-
varying external disturbances. Figure 2 displays the
outputs of the SRWNNs and estimates of diagonal
elements ofϑ. Note that the uncertainty terms (Ξr(·),
Ξa(·), Ξe(·), ϑ) are approximated by SRWNNs and
the adaptive technique, effectively. Besides, we can see
that all signals in the closed-loop system are bounded.

V. CONCLUSION

In this paper, a simple adaptive control system for
the EDFJ robot with model uncertainties has been
developed. First, the dynamics of the EDFJ robots has
been introduced. Second, the simple control law using
the DSC technique and SRWNNs has been designed
for the tracking control of EDFJ robots with model
uncertainties and external disturbances. Third, from
Lyapunov stability analysis, it is proved that all signals
in the closed-loop system are uniformly ultimately
bounded. Finally, from the simulation results for three-
link EDFJ manipulator, it was shown that the proposed
control system has the good tracking performance and
the robustness against model uncertainties and external
disturbances.

APPENDIX I
THE PROOF OFTHEOREM 1.

Differentiating the Lyapunov candidate function
(35) and substituting (15), (21), (25), and (26), (28)-
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(34), we can obtain

V̇ = sT
1 (M−1Km(s2 + y1)− k1s1 + αr)

+ sT
2 (s3 + y2 − k2s2)

+ sT
3 (J−1H(s4 + y3)− k3s3 + αa)

+ sT
4 (−k4s4 + αe) + σ1tr(W̃T

r Ŵr)

+ σ2tr(W̃T
a Ŵa) + σ3tr(W̃T

e Ŵe) + σ4tr(ϑ̃T
r ϑ̃r)

+
3∑

l=1

yT
l

(
−yl

τl
+ Pl

)
. (36)

From the boundedness ofQd and the existence ofµ,
there exists a positive constantRl such that‖Pl‖ ≤ Rl.
Therefore, using Property 2,Assumption3, (12), and
the fact2z1z2 ≤ z2

1 + z2
2 yields

V̇ ≤
(

1
2

+ Mm

)
‖s1‖2 +

(
1 +

Mm

2

)
‖s2‖2

+ (Jm + 1)‖s3‖2 +
(

1 + Jm

2

)
‖s4‖2

+
(

1 +
Mm

2

)
‖y1‖2 +

3
2
‖y2‖2

+
(

1 +
Jm

2

)
‖y3‖2 +

1
2
ρ2

r +
1
2
ρ2

a +
1
2
ρ2

e

−
4∑

l=1

kl‖sl‖2 +
3∑

l=1

(
− 1

τl
‖yl‖2 +

1
4
R2

l

)

− 1
2
σ1‖W̃r‖2F −

1
2
σ2‖W̃a‖2F −

1
2
σ3‖W̃e‖2F

− 1
2
σ4‖ϑ̃‖2F +

1
2
σ1W

2
r,M +

1
2
σ2W

2
a,M

+
1
2
σ3W

2
e,M +

1
2
σ4‖ϑ‖2F

whereJm is a maximum eigenvalue ofJ−1H. Here,
choosingk1 = (1/2)+Mm +k∗1 , k2 = 1+(Mm/2)+
k∗2 , k3 = Jm +1+ k∗3 , k4 = (1+Jm)/2+k∗4 , 1/τ1 =
1 + (Mm/2) + γ1, 1/τ2 = (3/2) + γ2, and 1/τ3 =
1 + (Jm/2) + γ3,

V̇ ≤ −
4∑

l=1

k∗l ‖sl‖2 − 1
2
σ1‖W̃r‖2F −

1
2
σ2‖W̃a‖2F

− 1
2
σ3‖W̃e‖2F −

1
2
σ4‖ϑ̃‖2F −

3∑

l=1

γl‖yl‖2 + O

≤ −2ζV + O. (37)

where k∗l > 0, γj > 0, O = 1
2σ1W

2
r,M +

1
2σ2W

2
a,M + 1

2σ3W
2
e,M + 1

2σ4‖ϑ‖2F + 1
2ρ2

r +
1
2ρ2

a + 1
2ρ2

e + 1
4

∑3
l=1 R2

l , and 0 < ζ <

min[k∗1 , k∗2 , k∗3 , k∗4/LM , γ1, γ2, γ3,
σ1λ1,m

2 ,
σ2λ2,m

2 ,
σ3λ3,m

2 ,
σ4λ4,m

2 ]. Here λ1,m, λ2,m, λ3,m, and λ4,m

are the minimum eigenvalues ofλ1, λ2, λ3, and
λ4, respectively. Equation (37) implies thatV̇ < 0
on V = µ when V > (O/2ζ). Accordingly, all
signals in the controlled closed-loop system are
uniformly ultimately bounded. Besides, the errors can
be kept arbitrarily small by adjustingK∗

l , γj , σl, λl

(l = 1, · · · , 4), (j = 1, 2, 3). That is, the tracking
errors1 can be made arbitrarily small. This completes
the proof of the theorem.¥
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